Tetranaphthocyclo-octatetraene Tetra-oxide, a Cyclisation Product from α-Naphthoquinone

By H. ERDTMAN* and H.-E. HÖGBERG

(Department of Organic Chemistry, Royal Institute of Technology, Stockholm 70)

In 1881 Knapp and Schultz¹ reported that α -naphthoquinone, when treated with concentrated hydrochloric acid, is transformed into an amorphous insoluble product. Some thirty-five years ago one of us re-investigated this material.² The product was acetylated and the resulting product found to contain two main components. One, assigned structure (I; R = OAc), was soluble in boiling quinoline but the other was insoluble in all solvents tried and was assigned structure (II).

The latter compound has lately been obtained in excellent yield from α -naphthoquinone by the action of aluminium chloride in nitrobenzene or chlorobenzene solution (Marschalk, Riegelbauer 4).

Structure (II) has been accepted³⁻⁵ but we have long considered it to be improbable because such a compound would be highly strained. The compound can be purified by sublimation $(400^{\circ}/10^{-3}$ mm.) or by recrystallisation from boiling dibenzofuran, forming long yellowish-white needles. The

mass spectrum confirmed our suspicion as to its structure $[M^+ = 560\cdot1079$, base peak, corresponding to $C_{40}H_{16}O_4$. Other peaks were at $M = 280 \ (M^{2+})$ and $M = 186\cdot7 \ (M^{3+})$. No other large

peaks were present.] Furthermore the substance was obtained from a mixture of bis- α -naphtho-quinone and the corresponding hydroquinone (1:1) with aluminium chloride in nitrobenzene.

The non-phenolic polymerisation product of α-naphthoquinone is obviously the tetranaphthocyclo-octatetraene tetra-oxide (III). The molecule is probably planar; X-ray investigation will settle this point. The i.r. spectrum (KBr disc) showed strong peaks at 665, 760, 920, 1030, 1060, 1110, 1350, and 1425 cm.⁻¹. Owing to the insolubility of the compound a good u.v. spectrum has not yet been obtained.

On distillation with zinc dust (I; R = OH) gives (I; R = H) as needles, m.p. 416—418°, solidifying and remelting at 435—436°. The mass spectrum showed $M^+=408\cdot1167$, corresponding to $C_{30}H_{16}O_2$. The i.r. spectrum (KBr disc) showed strong peaks at 670, 735, 760, 800, 920, 1070, 1210, 1360, 1375, and 1410 cm.⁻¹. The u.v. spectrum in CHCl₃ showed λ_{max} : 284 (log ϵ 4·88), 316 (4·49), 330·5 (4·44), 338 (4·42), and 347·5 nm. (4·40).

We thank the Swedish Council for Applied Research for financial support (to H.-E.H.).

(Received, April 26th, 1968; Com. 511.)

- ¹ H. v. Knapp, G. Schultz, Annalen, 1881, 210, 178.
- ² H. Erdtman, Proc. Roy. Soc. London, 1933, A, 143, 228.
- ³ C. Marschalk, Bull. Soc. Chim. France, 1938, (5), 5, 304.
- ⁴G. Riegelbauer, Dissertation, Erlangen, 1938.
- ⁵ E. Clar, "Aromatische Kohlenwasserstoffe", Springer Verlag, Berlin, 1952, p. 221.